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Abstract It is of great interest to allocate redundant component(s) in a coherent system in order to opti-
mize the lifetime of the resulting system in reliability engineering, and system security. This topic has
posed many interesting theoretical problems to which many researchers have devoted themselves in the past
decades. In this article, we aim to review some recent results on the problem of optimal allocations of ac-
tive [ standby] redundancies in coherent systems. Some open problems in this research line are posed as

well. Here we highlight the stochastic orderings as a powerful tool in our discussion.
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1 Introduction

In system reliability engineering, systems are made up of different components, e. g. , infrastructure
networks, supercomputers and nuclear reactors. One particular type of system is the coherent system
which is a system composed of a number of components that fails as soon as the set of failed components
reaches certain fatal set-thresholds. Consider a coherent binary system (Barlow and Proschan [1]) consis-
ting of n-components in which each component and the system can be in two performance levels: working
or failed. A system made up of n-components is coherent if it satisfies the following conditions: (i) every
component is relevant, 1. e. , each component contributes to the functioning/failure of the system; and (ii)
the reliability of the system is monotonic, i. e. , if a failed component is removed, then the reliability of the
system can only increase.

System safety is one of the main concerns in system reliability engineering, especially for systems that
required high reliability such as nuclear reactors. It has been shown that redundancy allocation technique
can be used to improve the reliahility of the system. In this regard, it is of great interest to allocate redun-
dant component(s) in a system with the aim of optimizing the lifetime of the resulting system in reliability
engineering and system safety. This topic was first investigated by Boland, El-Newwihi and Prochan [4].
They studied both active redundancy and standby redundancy and proved a general result in allocating a re-
dundancy in a k-out-of-n system. Shaked and Shanthikumar [5] also studied a similar problem using the
majorization approach. They considered the problem of allocating K redundancies to a series system. Since
then, a lot of researchers have been working on this problem, e. g., Singh and Misra [30], Singh and
Singh [31,32], Valdes and Zequeira [34,35], Valdes et al. [33], Brito et al. [8], Hu and Wang [14],
Misra et al. [22—24], Li and Ding [15], Zhao et al. [36], Ding and Li [11], Zhao et al. [37,38], Zhao
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et al. [39] and the references therein,

In general, there are two types of redundancies called active redundancy and standby redundancy com-
monly used in reliability engineering and system security. The former [active redundancy] is used when re-
placement of components during the operation of the system is impossible; in this case the redundancies are
put in parallel to components of the system, which leads to taking the maximum of random lifetimes. The
latter [ standby redundancy] is used when replacement of components during the operation of the system is
possible; in this case the redundancy starts functioning immediately after the corresponding original com-
ponent in the system fails, which leads to taking the convolution of rahdom variables.

For the sake of convenience, we first recall some pertinent notations of stochastic orders, and ma-
jorization and related orders. Throughout this paper, the term increasing is used for monotone non-decrea-
sing and decreasing is used for monotone non-increasing.

1.1 Stochastic orders

Definition 1.1 For two random variables X and Y with densities fx and fy, and distribution func-

tions Fx and Fy, respectively, let Fy=1 — Fx and Fy=1—Fy be the corresponding survival functions.
Then: X is said to be smaller than Y in the
( I ) likelihood ratio order (denoted by X <Y ) if fx(x)/ fy(z) is increasing in x

(fi ) hazard rate order (denoted by X <<, Y ) if Fx(x)/ Fy(z) is increasing in x ;
(i ) reversed hazard rate order (denoted by X <{,,Y) if Fx(x)/ Fy(z) is increasing in z ;

(iv) stochasticorder (denoted by X <<,Y ) if Fx(z) > Fy(x) for all x ;
(V) stochastic precedence order (denoted by X <, Y) if P(IX>Y) < P(X>Y);

(VI) increasing convex order (denoted by X <., Y ) if r Fx(x)dz < r Fy(zx)dzx for allt >0 ;

(Vii) increasing concave order (denoted by X <., Y ) if Jt Fx(x)dz < Jt Fy(x)dz for all£ >0 ;
[+] 0

(Viii) dispersive order (denoted by X <4, Y ) if Fi' (v)— F{' (w) < F;' (0)— F' (w) for0 <u < v <
1, where F7' and F;! are the right continuous inverses of the distribution function of X andY .

It is known that the likelihood ratio order implies both the hazard rate order and the reversed hazard
rate order which in turn implies the usual stochastic order, but neither the hazard rate order nor the re-
versed hazard rate order implies the other. One may refer to Blyth [2], Boland et al. [6]., Shaked and
Shanthikumar [29], and Muller and Stoyan [25] for details of various stochastic orders.

1.2 Majorization and related orders

The notion of majorization is quite useful in establishing various inequalities. Let x¢y << gy << oo <
Zn» be the increasing arrangement of the components of the vectorz = (x;, ***,x,) .

Definition 1.2 The vector x is said to majorize the vector y , written as x >>,.y , if

i i
Z zw < z Yo forj=1,-,n—1,
i=1 i=1

n n
and E : T = E : Yy «
i=1 i=1

Themajorization relation ¥ Z>,y means the components of x are more equal than those of y (cf.
Marshall and Olkin [19]). In addition, the vector x is said to submajorize the vector y weakly, written as
x>y, if

i j
Z I S Z Y& fOI'j - 1,"';7[.
i=1 i=1
Clearly,
X =,y =X 2Ly,
For an extensive and comprehensive discussion on the theory and applications of the majorization order,

one may refer to Marshall and Olkin [19]. Bon and Paltanea [7] introduced a pre-order on % , called p -
larger order, which is defined as follows.
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Definition 1.3 The vector x in R is said to be p -larger than another vector y , written as x >,y , if

i i
H o < 1__[ Yo for j =1,,n,
i<l i1

Let logx be the vector of logarithms of the coordinates of x. It is then easy to verify that
x =,y Slogx =, logy.
Moreover,
X =,y X 2>,y
for x,y € R . The converse is, however, not true. For example, we have (2,7) >>,(3,5) , but the weak
majorization order clearly does not hold between these two vectors.

2 Active redundancy

Consider a coherent system consisting of components C,,**+, C, with respective random lifetimes
X;y+,X,. We now have redundancies R,R,,***, R, with respective random lifetimes X,Y,,+*,Y,. As-
sume all the nonnegative random lifetimes X;,+**, X,,X,Y;,,Y, are statistically independent.

2.1 Allocation of one or two active redundancies

We first introduce the active redundancy models. One can decide which of these two allocations is bet-
ter by conducting stochastic comparisons on

T, = min{max{X,,X}, Xz, X, }
and
T, = min{X; ymax{X;, X}, Xz, X, }
for the series system. Note that in this case it is unnecessary to consider the parallel system. Some results
in the references focus on the allocation of one active redundancy in a two-component series system by sto-
chastically comparing
S, = min{max{X,,X},X;} and S, = min{X; ,max{X;,X}}.

Also, two models which are mathematically more general than above one. In the first one, we have
two spares R; and R, (possibly identical) with respective random lifetimes Y; and Y, . Due to some certain
constraints, we can only use one of them, either R, inC, , orR; inC, . To decide which of these two allo-
cations is better, one can make stochastic comparisons on

M; = min{max{X;,,Y,} Xz, X, }
and
M, = min{X, ,max{X;,Y:}, X3, , X, }

for the series system. For the two-component series system, we define

N; = min{max{X;,Y:}.X;}
and

N; = min{X; ,max{X;,Y,}}.
Note that if Y; and Y, have identical distribution, then this model reduces to the case of allocation of one ac-
tive redundancy mentioned above.

In the second model, we have two spares R; and R, which can be used in one of the following two allo-
cation ways: R; with C, and R; with C; , or R, with C, and R; with C; . One can compare these two alloca-
tion ways through stochastic comparisons on

H, = min{max{X,,Y,},max {X,,Y:}, X;,,X,}
and
H, = min{max{X,,Y,},max{X;,Y;}, X;,. X, }
for the series system, and for the two-component case, define
J. = min{max{X;,Y;},max {X,,Y;}}
and
J: = min{max{X,;,Y,},max{X;,Y;}}.
Note if P(Y, = 0)= 1, then this model reduces to the model of allocation of one active redundancy.
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We now review some results in the literature along with this research line and the related references
include Boland, El-Neweihi and Proschan [4,5], Singh and Misra [30], Mi [21], Valdes and Zequeira
[34,35], Romera et al. [27], Liand Hu [16], Li, Yan and Hu [17], Valdes et al. [33], Brito et al. [ 8]
and Zhao et al. [36—38].

Boland et al. [5] proved that

X, <. X9 {max{X,;,X}, X, » X} C&3] > {Xu smax{X,,X},X;, s X} (K]
which is a general result for k-out-of-n system and implies that X; <<, X, & T, >. T, . In many situations,
one may want to consider the joint distributions, rather than restricting attention to their marginal distri-
butions. The precedence order takes the joint distribution into consideration. Singh and Misra [30]
showed that
X, <. X,=> 8 =2, S,
and they also showed with the help of a counterexample that the converse of the above result does not
hold. In fact, they obtained a more general result for the k-out-of-n system as below.
X <, Xo= (max{ X, X}, Xsr " Xot g =5 (X omax{X,, X}, Xs 0 Xo b e
Li and Hu[16] proved that
Xl ét‘u X2:> Sl gfc'y SZ b
and if X and X, (or X, ) have convex survival functions, then
X < X:> S, <, S,.
Singh and Misra [30]] also made comparison between S; and S; in terms of the hazard rate ordering when
X,,X; andY have independent exponential distributions, i.e. , if X;,X; and Yhave independent exponential
distributions with parameters A; ,A; and A, respectively, then
A1 = max {A2,A}=>5:2>, S,. g
Zhao et al. [36] strengthened the result in (1) from the hazard rate order to the likelihood ratio order in
the following theorem.

Theorem 2.1 Let X, X;,and X be independent exponential random variables with parameters A;,2;
and A, respectively. Denote S; = min{max{X,,X},X;} and S; = min{X,; ,max{X,,.X}}. If A, > max
{Az5A} + then S, >, S, .

Valdes and Zequeira [34] proved that if X; <,, X, » X; <, Y, , Y, <, Y, and the hazard rate ratio
r:(t)/ () of X; and X is decreasing int , then N; >, N, . Misra et al. [23] further improved the above
result and obtained if X; <, X, , X, <,. Y, ,Y, <, Y, and rn (&) F, (&) > r,(¢) F,(¢) , then N, >, N, .
Li et al. [17] recently investigated the reversed hazard rate order in this setup and proved that if X; <, X,,

Y, <. Yiand G, (£) G, () F, (£) >G, (t) G, (1) F,(2) , then N; >, N, . Misra et al. [23] got another suffi-
cient condition for the reversed hazard rate order: * X, <, X, , X; <, Y, ,Y,<<,Y,, and F;(2) G, () >
F, () G, (¢) ’. It seems that this sufficient condition is more feasible. As pointed out by Misra et al. [23],
the condition F, () G, (z) > F,(t) G, (1) is actually equivalent to max(X,,Y;)<,max (X,,Y,). On the
other hand, Valdes and Zequeira [ 34] also provided two sufficient conditions for the usual stochastic order
to hold between N, and N, , thatis, () X; <, X, ,Y. <, YV, (B X, <. X, . X1 <.Y,,Y, <. X,.
For the likelihood ratio order, Zhao et al, [38] obtained the following new result.

Theorem 2.2 Let X,,X;,Y and Y; be independent exponential random variables with parameters A, »
Az»A7 and A7 , respectively. If either A, <Ay <A1 <27 and (33545 ) = (A1sAs ) s ord, <Af <Ay <Ay
and (Az,41) 2., (A7 A7) , then N; <, N,

It is also of interest for the case when X; =, Y;,i = 1,2. Proposition 3 in Valdes and Zequeira [ 34]
claimed that there is no hazard rate order between N; and N; under the condition X; <{;, X, , but we have
the following result for reversed hazard rate order under the exponential setup.

Theorem 2.3 Let X,,X;,Y;and Y, be independent exponential random variables with parameters A, ,
A2sA; and A; , respectively. Ifd; > 1; , then N; >, N, .

Romera et al. [27], Li et al. [17] and Misra et al. [23] investigated the stochastic precedence order

between M; and M, . Specifically, Romera et al. (2004) proved that if X; <, X; and F, ()G, (2)>
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F, (t)G; () , then M, >, M,. Lietal [17] and Misra et al. [23] independently proved that if X, <,,
X, Y, <, YiandY,, X, , X5, X,y X, (or Y, X3, X3, X,» -+, X, ) has convex survival functions, then
M >, M,.

Valdes et al. [33] proved that M, >>,, M, holds provided either of the following two conditions holds:
() X, <X, Y, <,.Vis50r (W)X, <., X, , X, <, Y andY, <, X,. Misraetal. [23] generaliz;d/suﬂ—
plemented the results of Valdes et al. (2010) as below. If any one of the following conditions holds: (a)

X; <iw X, and Fz (t)él )= FI (t)éz @) ; MY, <, Y, ansz (t)él ()= Fx (t)éz ) ; () X; < X,
and F, (1) G, (1) > F, (1) G, (¢) , then M, >, M, .

Boland et al. [4] proved that if X; <, X, andY, <<, Y, , then H, <<, H, . Romera et al. [27] proved
if X; <, X,andY, <, Y, , then H, >, H; . Boland et al. [4] and Romera et al. [27] also proved similar
results for the k-out-of-n systems. Valdes et al. [33] showed H; >>,, H, also holds under the condition X,
<4 X,andY; <, Y, . Moreover, they proved if X; =, Y;,i=1,2, and X; <, [ <, ] X, or X; <,[<, ]
X, , then H, <, H, . Misra et al. [23] listed some sufficient conditions for the stochastic precedence or-
der,

Valdes and Zequeira [35] proved that if X; =, Y,,i = 1,2, X; <,, X; , and the hazard rate ratio
r: (8)/r (¢) of X; and X, is decreasing, then J; <,, J; ; while Brito et al. [8] proved thatif X; =, Y;,i=
1,2, X; <, X, » and the hazard rate ratio r, (¢)/ r, (¢) of X, and X; is increasing, then J, <,, J, . Misra
et al. [23] improved the result of Valdes and Zequeira [35] and proved if X; =, Y;,i =1,2 , X; <, X, »
and ry (£)F; (t) > r, (£)F1(¢) , then J, <,,.J; . In this regard, Zhao et al. [37] established the following
result for the likelihood ratio order.

Theorem 2.4 Let X,,X;,Y, and Y, be independent exponential random variables with parameters 4, ,
Az»A; and A, » respectively, Then, J, <, J; .

At the end of this subsection, we list two open problems that have not been solved yet. The first one
is involved in the dispersive order.

Problem 2.1 Let X,, X, and X be independent exponential random variables with parameters A;,4;
and A , respectively. Denote S, = min{max{X,,X},X;} and S; = min{X, ,max{X;,X}}. If }; > max
{2252} » then S; >u, S, .

Problem 2.2 Let X,,X,,Y,andY; be independent exponential random variables with parameters A, ,

Az:A; and Ay , respectively. Under what condition it holds J, >, J . .
2.2 Allocation of k active redundancies

Suppose we have a general coherent system ¢ consisting of n components C, ,+**,C, having independent
lifetimes X, ,+++, X, with respective distribution functions F,,***,F, . Denote T(X) = 7(X,,*,X,) as the
lifetime of the coherent system (). k active spares R;, ***,R, have independent and identically distributed li-
fetimes Y, ,+++,Y, with common distribution function G , and (X;,:**, X,) and (Y, ,*,Y,) are statistically
independent. We are now going to discuss the problem of allocating these & active spares ton original com-

ponents. Any element of the set
K= {L = Lyl il = 051, ,kyi = 1a‘"9nv2 L = k}
i—1

is said to be an allocation. Denote Ts(K),K € K, the lifetime of the resulting system obtained from the
series system (s by putting K; spares toC; , i =1,+=,n. It should be mentioned here that all allocations in
a parallel system will yield the same life distribution and thus we do not need to consider this case.
Suppose all X; and Y, are i. i. d. , in other words, F; = F = G . Shaked and Shanthikumar [ 28] consid-
ered the problem of allocating k redundancies to a series system and established that
Ts(K) >, Ts(K') whenever K’ >,K, 2
which can also be obtained from Theorem 3. 3 of Hu and Wang [14] or Theorem 2. 2 of Boland et al. [4].
In fact, Hu and Wang [14] got this result for any k-out-of-n system, while Boland et al. [4] obtained a
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more general result wherein even the condition that all rvs are i. i. d. is unnecessary. Singh and Singh [31]
further improved the result in (2) from the usual stochastic order to the hazard rate order as
Ts(K)>, Ts(K’) whenever K’ >, K. 3
Misra et al. [22] showed by a counterexample (Example 2. 2) that the result in (3) may not hold without
the condition that all rvs are i. 1. d. Ding and Li [11] recently established that
Tua (K)>4 Ty (K') whenever K’ >,.K, 4)
which extends the result in (3) by Singh and Singh [31] from the series case to the k-out-of-n case and also
strengthens the result by Hu and Wang [14] from the usual stochastic order to the hazard rate order. As
an application of the result of (4), Ding and Li [11] showed that, for two non-negative random vectors
(Xy,++,X,) and (Y;,++,Y,) with their hazard rates proportional to a common baseline one by rational pa-
rameters vector (;,+=*5A,) and (g sp,) »
X 2 Yo whenever  (A15°* 34,0 =, (19 s 1)
thereby strengthening the result by Pledger and Proschan [26] from the usual stochastic order to reversed
hazard rate order. Here, we pose the following two open problems for order statistics from the PHR sam-
ple or the gamma sample.
Problem 2.3 For two non-negative gamma random vectors (X;,*, X,) and (Y,,*,Y,) with com-
mon parameter 7 and scale parameters vector (A1s+**54,) and (u1,***» 1) »
Xin =2 Yin  whenever  (A15+32,) Zm (it spa).
Problem 2.4 For two non-negative gamma random vectors (X,,-**, X,) and (Y;,*+,Y,) with com-
mon parameter 7 and scale parameters vector (; 5+ »A,) and (i spt,) »
Xiw =n Y, whenever Qrso5d) o (uaomapa).
For the special case whenn = 2 , Hu and Wang [14] and Misra et al. [22] independently proved that,
for a series system with two nodes,
Ts(kysks )= Ts(ky k%) whenever (k),k5)>, (kisk,). (5
Hu and Wang [14] also used a counterexample to show that (5) does not hold in general for the case when
n> 2. However, they left an open problem whether the result in (5) may be strengthened to likelihood
ratio order. Zhao et al. [36] solved this problem and obtained that
Ts (ki sk2) 2>, Ts (ki ,k2) whenever (k) ,ky)>,, (ki sks).
In fact, they reached a more general result as
Ts(kyyky ) >, Ts(kysk2) whenever (kY ,k3)>. (ki k).
They also established that
Ts (kl sky ) >0 Ts (k,1 vklz ) whenever (kll +1 aklz + 1)21: (kl +1 skz + 15,
which allows the reliability engineer to obtain more reliable resulting system even though he/she has less

n
redundancies. For the n-components series system, it is shown if K = nk = 2 k; and K, = (k,*+,
i=0

k) , then
Ts(Ko)=y Ts(K).

Andif (B* + 1" = [ [Gki+1D and K* = (k" ,*+,k") , then

Ts (K™ )=a4 Ts(K). (6)
They also showed by a counter example that the reversed hazard rate order in (6) cannot be replaced by the
hazard rate order,
Suppose F; = F 7= G. Misra et al. [22] proved, if log (G(x))/log (F(z)) is an increasing function on
R, , then
T.(K)>,, T.(K') whenever K’ >,K.
Since 76(x)/ rr(x) (r is failure rate funtion) is an increasing function of x on R, implies that
log (G(x))/log (F(x)) is an increasing function, it is also a sufficient condition and seems to be easily
verified. Li and Ding [15] further considered this problem for the k-out-of-n system. Denote Ty.(K) ,
K € K as the lifetime of the resulting system obtained from a k-out-of-n system by putting K spares to C; ,
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¢ = 1,+,n, They proved that
Tun (K)=>, Ty (K') whenever K >.K.
Based on the result on the series system, we have the following open problem for the general k-out-of-n
system.,
Problem 2.5 If log (G(x))/log (F(z)) is an increasing function on R; ,then
Tua (K)> Tun(K') whenever K’ >,K.
Suppese F, <, F,, < ** <, F, DenoteKgr = {L:LeKand !, =1, > 1,}.
Misra et al. [15] proved that, if K, K’ € Kg » then
T (K)>, T.(K'), whenever K’ > K.
Li and Ding [15] showed, for K,K’' € K such thatl; =1’; and [; = I’; for some 1 <i<j <n, andl, =1',
forr € {1,*+yn}/{i,j} , it holds that
Tun (K)>, Ty (K'Y if and only if I; < 4.
This implies that one should allocate more redundancies to the component which is stochastically smaller.
Then in order to obtain the optimal allocation policy, it is natural one should pay more attention to the set

Ke={L:L€Kandly <L < <UL}
forK,K' € KNR ,they proved, if G >, F; , then ‘

Tun (K)>, Tun (K') whenever K’ >,K.
An example (Example 1) is also used to show that the condition G >, F, cannot be dropped. Let K* =
(I,* y=+,1,") € K such that |1,* —1* | < 1 for any pairi 3 j and K* = (I, ", , I,*) € Kz such that
|1, —1;* | < 1 for any pairi # j . Obviously, K" is not unique and K* is unique. Then, for any K € K
, fG>, F, , then

Tkln (K)Sﬂ le]n (K_.) )

i.e, K" is the optimal allocation policy.

Problem 2.6 There should have stronger order results of series systems for the special case whenn =
2, like likelihood ratio order.

Problem 2.7 What is the picture for the case when G <, F, and can we obtain some results for this
case?

2.3 Active redundancy at component level vs, system level

It is known that the performance of a coherent system consisting of independent components can be
enhanced by putting spares to each of its components or by creating a duplicate system consisting of spares
similar to the original coherent system. For example, there is a series system with n components and we
have another n-component at hand as spares. In order to enhance the lifetime of the original series system,
we can assemble these n spares either on the component level (Figure 1(a)) or on the system level (Figure
1(b)). Naturally, it is of great interest and importance to make sure which type is superior to the other.

Xl XZ ‘X:1 Xl XZ )(n
? ? ------ ? E f ------ E_
0 O ] e = il =
YI Y2 )/n Yl YZ }/n
(a) Component level (b) system level

Figure 1 Component level versus system level.
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Consider a series system with two components and two spares. Let X;,X, be the lifetimes of components
andY; , Y, be the lifetimes of spares. Denote

Q; = min {max{X,,Y:},max{X,;,Y,}}
and

Q; = max {min{X;,X; },min{Y,,Y;}}
as the lifetimes of systems with redundancy at the component and system levels, respectively. In the case
of matching spares, i.e., X; =,Y,,i = 1,2, the redundancy at the component level is better in the hazard
rate ordering than the redundancy at the system level, that is, Q, >, Q; as shown in Boland and El-New-
eihi [3]. An analogous result was proved for the reversed hazard rate ordering in Gupta and Nanda [12].
Brito et al. [8] further considered the case of matching spares and gave a condition under which the likeli-
hood ratio ordering holds. Specifically, they proved, under this setup, if the hazard rates of X, and X, are
proportional, then

Q =, Q.

Gupta and Nanda [12] proved that Q; =>, Q; in the case of non-matching spares, i. e. , X; =, X; and
Y, =, Y;. Boland and El-Neweihi [ 3] showed with a counterexample that the hazard rate ordering does not
always exist between them. In this regard, Brito et al. [ 8] proved that, if the reversed hazard rates of X
and Y, are proportional, then Q, >, Q; .

In the component redundancy case, we allocate an active spare R; to the component C; , ¢ = 1,,n,
Then the resultant coherent system, denoted by Sc , has lifetime (max(X,Y)) = z(max(X,,Y;), ",
max (X,,Y,)) . In the system redundancy case, we duplicate the coherent system & with components C, ,
w+,C, by Ry ,***,R, and make it available as an active redundant spare to the coherent system (. The re-
sultant coherent system, denoted by Sg, has lifetime max (z(X),7(Y)) . For general coherent systems, it
is well known (cf. Barlow and Proschan [1] ) that the component redundancy is better than the system re-
dundancy in the sense of the usual stochastic ordering, i.e. ,

r(max (X,Y)) >, max ({X),z(¥)).
It would be very interesting to examine some other stronger stochastic orderings. In the literature, many
researchers focused on this topic. In the case of matching spares, i.e. , X;=,Y; ,i=1,*-,n. Boland and
El-Neweihi [3] proved, for series systems, that the component redundancy is superior to the system re-
dundancy in the sense of the hazard rate ordering, i.e. ,

r(max (X,Y)) =) max(r(X),r(Y)). (N
The above result can be readily extended to series-parallel systems (cf. Corollary 1-1 in Boland and El-Ne-

weihi [3]), . e., if (X )= min (max X;) , where A, ,- A,, are disjoint, and .L"JIA,- = {1,*n} , then (7)
2

I<j<n i€ 4,
holds. When all components and spares are i. i. d. , they also proved, for general coherent systems, if
ph(p)/h(p) is non-increasing in p andh (p) << pfor all pe[0,1] , where A(p) dencte the reliability func-
tion of the coherent system, then (1) also holds, It can be found that this result cannot be applied to the
general k-out-of-n: G system, but they showed the result is true for the special case of 2-out-of-n; G sys-
tem and left the general case for an open problem. Gupta and Nanda [12] obtained a similar result for the
reversed hazard rate ordering. In fact, Singh and Singh [32] have solved the open problem posed by Bo-
land and El-Neweihi [3] and established a stronger result in the sense of the likelihood ratio ordering for
the general k-out-of-n:G system, that is, if all components and spareé have i. i. d absolutely continuous li-
fetimes, then t

Tein.e (Max (X,Y) ) =, max (T (X s Taine (¥ ).
Also, they remained an open problem that whether this result still hold for the matching case. For this
open problem, the result for the two-component series system has been showed in Brito et al. [8] where
they require that the hazard rates are proportional. Due to the complexity of distribution theory in this
case, it is difficult to solve the above open problem for the general k-out-ot-n system. However, we have
solved it for the case of series system under the exponential framework (Zhao et al. [39]).

Theorem 2.5 Let X,,*, X, be independent exponential lifetimes with respective parameters y; ,+**,
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tn» and Yy, ++,Y, be another independent set with respective parameters p; ,*** sy, . Then,
r{max (X,Y)) >, max (r(X),z(Y)).
Observe that the parallel system case is trivially true, and so we have the following further open problem
for the general k-out-of-n system.
Problem 2.8 Let X,,*+, X, be independent exponential lifetimes with respective parameters g,
tn» and Yy, +++,Y, be another independent exponential set with respective parameters yys*** s, . Then,
Tk|n:G (max(X,Y) )ermaX(mn,c (X)) 2 Tkln.G (Y)).

3 Standby redundancy

3.1 Allocation of one or two standby redundancies
Let us next introduce the standby redundancy model. In this case, one can decide which of these two
allocations is better by carrying out stochastic comparisons on
T3 = min{X, + X, X;,X;5,,X,}
and
T; = min{X,, X, + X, X;,+,X,}
for the series system, and
T} = max{X; + X, X;, X3,,X,}
and
T = max{X,, X, + X, X3,,X,}
for the parallel system. Some results in the references pay attention to the allocation of one standby redun-
dancy in a two-component series [ parallel] system by stochastically comparing
S =min{X; +X,X,} , S = min{X,,X;+ X}
and
S = max{X, +X,X;} , S = max{X;,X;+ X}.
Similar to the case of active redundancy, here we also have two more general models. To decide which
of these two allocations is better, one can make stochastic comparisons on
M; = min{X, +Y,,X;,Xs,, X, }
and
M, = min{X,,X; +Y,,X;5,,X,}
for the series system, and
M = max{X, +Y,,X;,X;3,,X,}
and
M; = max{X,, X, +Y,;.X;,,X,}
for the parallel system. For the two-component series system, we define
N} =min{X; +Y:.X;} and N = min{X,,X; +Y;},
and for the two-component parallel system, we define
N? = max{X; +Y,,X;} and N} = max{X;,X,+7Y;}.
It is easy to see if Y, and Y, have identical distribution, then this model reduces to the case of allocation of
one standby redundancy.
In the second model, one can compare these two allocation ways through stochastic comparisons on
H{ = min{X, +Y,,X, +Y:,X;3,, X, }
and
H; = min{X; +Y,,. X, +Y,,Xs,.X,}
for the series system, and
H{ = max{X: +Y:, X, +Y:, X5, X, }
and

H§ = max{X1 +Y2 sz +Y1 ’X:; y""Xn}
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for the parallel system. For the two-component case, define
i = min{X, +Y1’X2+Yz} ’ fizmin{X1+stXz+Y1}
and
J} =max{X;+Y,,X,+Y:} , J{=max{X,+Y,;,X;:+Y,}.
Note if P(Y; = 0)= 1, then this model reduces to the model of allocation of one standby redundancy.
For this topic, the related references include Boland et al. [5], Singh and Misra [30], Li and Hu
[16], Li, Yan and Hu [17], Misra, Misra and Dhariyal [24], Zhao et al. [36] and the references therein.
Boland et al. [5] proved that
X, <w X,oTi >, T: and X < X, Tt <, T,
Singh and Misra [ 30] proved that
X1 <. X:=>Ti 2, T: and T{ <, TS
Li and Hu [16] proved that if X; <., X, and X,, X;,-**, X, have convex survival functions, then T}
>, T3 . They also proved that if X; <., X; and if X, or X, has convex survival function, then S <, S .
Under the exponential framework, Zhao et al. [36] established the following result.
Theorem 3.1 Let X;,X; and X be independent exponential random variables with parameters A;,2;
and A , respectively. Denote S; = min{max{X;,X},X,} and S; = min{X,,max{X,,X}}. Then
A = A= S >, Si.
Misra et al. [24] proved that
X, <. X;, and X, <, Y, > M >, M;

and
X, <. X; and Y, <., Y, M <, M}.

They also proved that if X; or X, has an increasing failure rate, F.()/ F, () is log-convex inte Ry » then
X, <w X, and Y, <,Y,= Nj >, Ni.
Zhao et al. [38] recently established the following result.

Theorem 3.2 Let X,,X,,Y,andY,; be independent exponential random variables with parameters A, ,
AzsAr and A5 , respectively. Supposed; <Ay andAr < A7 . HA2QAT +2.)—28 5 +4,)>0, then N >
»N3 .

Theorem 3. 2 suggests that the standby redundancy with a longer expected lifetime should be allocated
to the component with the shorter expected lifetime in a two-component series system. For the stochastic
precedence order, Misra et al. [24] proved, if X;,X3,,X, (or X;,X;,++,X,) have convex survival func-
tions on Ky , then

X, <o Xo> My >, M3,
and if X;,X;,,X, (or X;,X;,+,X,) have concave survival functions on R, , then
X <. XpandY, <, Y,=> MY <, MS,
Li et al, [17] established that

X <o X0 V1 Yoo 1<, T
and

X1 2, XY, 2, Y,0] =, T3
For this case, Zhao et al. [37] established the following result for the likelihood ratio order.

Theorem 3.3 Let X,,X,;,Y,and Y, be independent exponential random variables with parameters A, ,
AzsA; and A; » respectively. Then, Ji <, J3 .

For the parallel system, we have the following open problem.

Problem 3.1 Let X,,X,,Y,and Y; be independent exponential random variables with parameters 2, ,
As5A; and A, , respectively. Then, J# <, J?.

Li et al. [17] also proved that

X, <, X, and Y, <, Y= Hi <, H3
and
X, <. X;and Y, <, Y,=> H{ >, H{.
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Misra et al. [24] further proved that if X, , X35+, X, (or X; X3, X,) have convex survival functions on
R, , then
X, <o X;andY, <, Y,=> H] >, Hi,
and if X, or X, has convex survival functions on R, and X, = 3,4,*n, has a log-convex density on R, ,
then
X; <o X,and Y, <, Y,=> Hf >, HS.
They also proved thatif X;,X;,,X, (or X;,X;,°**,X,) have concave survival functions on R, , then
X, _<_fc1- X and Y, <.Y,=> H} gsp H}.
3.2 Standby redundancy at component level vs. system level
Consider a series system with two components and two standby spares. Denote
QG =mn{X, +Y,,X,+Y,}
and
Q = min{X,,X; }+min{Y,,Y; }
as the lifetimes of systems with redundancy at the component and system levels, respectively. In this part,
we will use similar notations to those in Section 2. 3. For the general coherent system, in component re-
dundancy case, we allocate a standby spare R; to the component C; , i = 1,++,n. Then the resultant sys-
tem @ , denoted by T¢ , has lifetime 7 (X +Y)= ¢(X;+Y:,*,X,+Y,) . In the system redundancy case,
we duplicate the coherent system @ with components C,,++, C, by R;,**-, R, and make it available as a
standby redundant spare to the coherent system@ . The resultant coherent system, denoted by Ts , has li-
fetime £ (X)+z(Y) . A well-known principle among design engineers states that redundancy at the compo-
nent level is always better than at the system level. This statement, however, is not true in general for the
standby redundancy case though it is for the active redundancy case. Boland and El-Neweihi [ 3] gave the
conclusion that, in the sense of the usual stochastic order, redundancy at the component level is better
than redundancy at the system level for series systems, while the reverse is true for the parallel systems.
For the general k-out-of-n systems, there is no any comparison result. Boland and El-Neweihi [ 3] also
showed that, for the series systems, if all random variables are exponentially i. i. d, then the usual stochas-
tic order can be strengthened to the hazard rate order. Meng [20] further gave the equivalent relationship.
In this regard, we have established some new results when the original components and spares have
independent but nonidentical exponential distributed lifetimes (Zhao et al. [39]). Specifically, for the
standby redundancy of series systems, if either X; =, Y; (i =1,>,n) or X, =, =, X, and ¥, =, =,Y,,
it is established that
min(X; +Y;, X, +Y,)>, min(X,, X, )+ min Yy, Y,).
For the standby redundancy of parallel systems, if X; =, X, andY, =, Y, , we established
max(X, +Y,,X, +Y,)<, max(X;,X;)+ max(Y,,Y;),
andif X;, =, Y, (¢=1,2), we proved
max(X, +Y:,X, +Y,)<, max(X;,X,)+ max(Y,,Y,).
Problem 3.2 Are there similar results for the case when all the original components and standby re-

dundancies have different distributions?
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